On an autoregressive process driven by a sequence of Gaussian cylindrical random variables
Abstract
Let
be a sequence of identically distributed, weakly independent and weakly Gaussian cylindrical random variables in a separable Banach space
. We consider the cylindrical difference equation,
, in
and determine a cylindrical process
which solves the equation. The cylindrical distribution of
is shown to be weakly Gaussian and independent of
. It is also shown to be strongly Gaussian if the cylindrical distribution of
is strongly Gaussian. We determine the characteristic functional of
and give conditions under which
is unique.
![\{Z_n\}_{n\in\mathbb{Z}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/ee87d0cd493f09d4fc754756df6707f7.png)
![U](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4c614360da93c0a041b22e537de151eb.png)
![X_n=AX_{n-1}+Z_n,~{n\in\mathbb{Z}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/219d64d0239e8235122eceaf8c96d230.png)
![U](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4c614360da93c0a041b22e537de151eb.png)
![\{ Y_n\}_{n\in\mathbb{Z}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/30956c6324d62681824d31f54c8fb01d.png)
![Y_n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/6dd41b22f5a18d6950bfc58ca5ec10e2.png)
![n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7b8b965ad4bca0e41ab51de7b31363a1.png)
![Z_1](https://853417.krfdn.asia/plugins/generic/latexRender/cache/c6847901dd09a7efd9dd75477a521329.png)
![Y_n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/6dd41b22f5a18d6950bfc58ca5ec10e2.png)
![\{Y_n\}_{n\in\mathbb{Z}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/aefbfc70d6dda67c601d230836f54eab.png)
DOI Code:
10.1285/i15900932v41n1p111
Keywords:
Autoregressive process; Cylindrical process; Cylindrical measure; Cylindrical random variable; Stationary process
Full Text: PDF