A Bogomolov type property relative to a normalized height on ![M_n(\masaoQB)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/9bbf7c8412b143000804f93269fb0fb3.png)
Abstract
In \cite{Tala 99}, Talamanca introduced a normalized height on
, which is an analogue of the canonical height on elliptic curves. In this paper, we examine whether
has a Bogomolov type property relative to this height if a subfield
has the Bogomolov property.
![M_n(\masaoQB)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/9bbf7c8412b143000804f93269fb0fb3.png)
![M_n(F)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/bd2fc63cfbb6dd2253270af9aef0591c.png)
![F\subset\masaoQB](https://853417.krfdn.asia/plugins/generic/latexRender/cache/f4666a192458c7fd4518e125739b250f.png)
DOI Code:
10.1285/i15900932v39n1p59
Keywords:
normalized height on $M_n(\masaoQB)$; Bogomolov property
Full Text: PDF