A spaceability result in the context of hypergroups
Abstract
In this paper, by an elementary constractive technique, it is shown that
is non-empty, where
is the dual of a compact countable hypergroup introduced by Dunkl and Ramirez. Also, we prove that for each
,
is spaceable.
![L^r(\mathbb{Z}_+)-\bigcup_{q<r}L^q(\mathbb{Z}_+)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/6a82bba57f38c318b8e604c72dc2b3cc.png)
![\mathbb{Z}_+](https://853417.krfdn.asia/plugins/generic/latexRender/cache/b8f4584ea698debb88f1516bbc97821e.png)
![r>1](https://853417.krfdn.asia/plugins/generic/latexRender/cache/0ed8747e5abf5cc0752edc57a744ccd1.png)
![L^r(\mathbb{Z}_+)-\bigcup_{q<r}L^q(\mathbb{Z}_+)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/6a82bba57f38c318b8e604c72dc2b3cc.png)
DOI Code:
10.1285/i15900932v38n1p17
Keywords:
locally compact hypergroup; spaceability; $L^p$-space
Full Text: PDF