New generalizations of lifting modules
Abstract
In this paper, we call a module
almost
-lifting if, for any element
, there exists a decomposition
such that
and
. This definition generalizes the lifting modules and left generalized semiregular rings. Some properties of these modules are investigated. We show that if
in
, where
s are orthogonal central idempotents, then
is an almost
-lifting module if and only if each
is almost
-lifting. In addition, we call a module
-
-lifting if, for any
, there exists a decomposition
for some positive integer
such that
and
. We characterize semi-
-regular rings in terms of
-
-lifting modules. Moreover, we show that if
and
are abelian
-
-lifting modules with
for
, then
is a
-
-lifting module.
![M](https://853417.krfdn.asia/plugins/generic/latexRender/cache/69691c7bdcc3ce6d5d8a1361f22d04ac.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
![\phi\in S=End_R(M)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/415c419f6329c15c9614b10ac7b70371.png)
![r_M\ell_S(\phi)=A\oplus B](https://853417.krfdn.asia/plugins/generic/latexRender/cache/80d1459610e70932924e6932c1453c7e.png)
![A\subseteq \phi M](https://853417.krfdn.asia/plugins/generic/latexRender/cache/fbac7d608066ed9183a9696323324264.png)
![\phi M\cap B\ll M](https://853417.krfdn.asia/plugins/generic/latexRender/cache/6a81359a73a05167ae903aac7bcb8c8c.png)
![f_1+\cdots + f_n=1](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e40d46991397d3b715bc9c0da3dc945a.png)
![S](https://853417.krfdn.asia/plugins/generic/latexRender/cache/5dbc98dcc983a70728bd082d1a47546e.png)
![f_i](https://853417.krfdn.asia/plugins/generic/latexRender/cache/59bdf0ba696e13164c5a926386f23cb0.png)
![{^{ ,}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/8d6aa90b01f274c0757a2e7917281a72.png)
![M](https://853417.krfdn.asia/plugins/generic/latexRender/cache/69691c7bdcc3ce6d5d8a1361f22d04ac.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
![f_iM](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1989381f2055895adb42ca64ef97f54a.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
![M](https://853417.krfdn.asia/plugins/generic/latexRender/cache/69691c7bdcc3ce6d5d8a1361f22d04ac.png)
![\pi](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4f08e3dba63dc6d40b22952c7a9dac6d.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
![\phi\in S](https://853417.krfdn.asia/plugins/generic/latexRender/cache/d09b3067c01fad5ed9db9761ce9c8f80.png)
![\phi^nM=eM\oplus N](https://853417.krfdn.asia/plugins/generic/latexRender/cache/afd620cd2c79cca9210804e41edd2049.png)
![n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7b8b965ad4bca0e41ab51de7b31363a1.png)
![e^2=e\in S](https://853417.krfdn.asia/plugins/generic/latexRender/cache/39b66e527816fa403eceb46bd54787af.png)
![N\ll M](https://853417.krfdn.asia/plugins/generic/latexRender/cache/6a3eb00a4df5c9aa6e8c549ff3ff61b6.png)
![\pi](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4f08e3dba63dc6d40b22952c7a9dac6d.png)
![\pi](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4f08e3dba63dc6d40b22952c7a9dac6d.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
![M_1](https://853417.krfdn.asia/plugins/generic/latexRender/cache/0a04315fff14859d66e75bebbaaa6990.png)
![M_2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/2ce2507b1ae2246c8fd6f465f7bd2a28.png)
![\pi](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4f08e3dba63dc6d40b22952c7a9dac6d.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
![Hom_R(M_i, M_j)=0](https://853417.krfdn.asia/plugins/generic/latexRender/cache/55da6797383a80c089d4f2cbb2059d16.png)
![i\neq j](https://853417.krfdn.asia/plugins/generic/latexRender/cache/3d27367ea16a2a7b40b3eb3172a32120.png)
![M=M_1\oplus M_2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/3adb61013308d732f673df299b92e293.png)
![\pi](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4f08e3dba63dc6d40b22952c7a9dac6d.png)
![\mathcal{I}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/11c30e85ef351220045729fb5f1b9006.png)
DOI Code:
10.1285/i15900932v36n2p49
Keywords:
Lifting module; $\mathcal{I}$-Lifting module; Semiregular ring; Semi-$\pi$-regular ring
Full Text: PDF