Geometric characterization of the rotation centers of a particle in a flow
Abstract
We provide a geometrical characterization of the instantaneous rotation centers
of a particle in a flow
over time
. Specifically, we will prove that: a) at a specific instant
, the point
is the center of curvature at the vertex of the parabola which best fits the path-particle line
on its Darboux plane at
, and b) over time
, the geometrical locus of
is the line of striction of the principal normal surface generated by
.
![\overrightarrow{O}\left( p,t\right)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/3ac6b5be68dec004b53046b32e17a4c6.png)
![\mathcal{F}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a86b476d942a21c30901ddada8bc5f95.png)
![t](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e358efa489f58062f10dd7316b65649e.png)
![t](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e358efa489f58062f10dd7316b65649e.png)
![\overrightarrow{O}\left( p,t\right)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/3ac6b5be68dec004b53046b32e17a4c6.png)
![\gamma\left( t\right)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4c5c04980a4544a4d0765ca2b4a566f7.png)
![p](https://853417.krfdn.asia/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![t](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e358efa489f58062f10dd7316b65649e.png)
![\overrightarrow{O}\left(p,t\right)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/52074151c6a400c5e4621099a054e895.png)
![\gamma\left( t\right)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4c5c04980a4544a4d0765ca2b4a566f7.png)
DOI Code:
10.1285/i15900932v36n2p37
Keywords:
Geometry of flows; structure of flows
Full Text: PDF