Convex hypersurfaces with transnormal horizons are spheres
Abstract
Let M be a smooth
, compact, connected hypersurface of Euclidean
-space
,
, with nowhere-zero Gaussian curvature. Thus M is differeomorphic to the n-sphere
and every affine tangent hyperplane meets M in just one point.Let λ be any (straight) line in
and let
denote the set of points of M at which the tangent hyperplane is parallel to λ.We call
the λ-horizon of M. If, for every λ,
is a transnormal submanifold of
[5] we shall say that M is horizon-transnormal.In this paper we show that if M is horizon-transnormal then M is a round sphere.The converse is obviously true.We show in §2 that if M is horizon-transnormal then it is transnormal.If M is transnormal then every λ-outline ω_(Error rendering LaTeX formula)M_λ$ is contained in a hyperplane normal to λ.It is then a consequence of a classical result that M must be an n-ellipsoid. Consequently, due to its transnormality, M is a round n-sphere.
![(=C^∈fty)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e21ed264617c9d81a7b4f69e1bdcba82.png)
![(n+1)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/06fc1a78b9aaaee997b0adbfa5992f6c.png)
![R<sup>n+1</sup>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/efc10ea973692b0d881088c156718044.png)
![n≥ 2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/97b8ed14da849343d82913304f2e705d.png)
![S<sup>n</sup>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7e14407c9cb076098c2c2df9893c1ac8.png)
![R<sup>n+1</sup>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/efc10ea973692b0d881088c156718044.png)
![M_λ](https://853417.krfdn.asia/plugins/generic/latexRender/cache/982fd05f56d9ddb54cc39d5ce91852f8.png)
![M_λ](https://853417.krfdn.asia/plugins/generic/latexRender/cache/982fd05f56d9ddb54cc39d5ce91852f8.png)
![M_λ](https://853417.krfdn.asia/plugins/generic/latexRender/cache/982fd05f56d9ddb54cc39d5ce91852f8.png)
![R<sup>n+1</sup>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/efc10ea973692b0d881088c156718044.png)
DOI Code:
10.1285/i15900932v7n2p167
Full Text: PDF