An application of spectral calculus to the problem of saturation in approximation theory
Abstract
Let
, be a net of bounded linear operators on the Banach space E converging strongly to the identity on E. For a given complex-valued function f of a fixed type we consider the net
. Among other things we shall show that under reasonable conditions the saturation space of with respect to a given net
of positive real numbers converging to zero is equal to that one of
. More generally we consider nets
where
is a net of complex-valued functions and we determine the saturation space of such a net in dependence of the saturation space of .
![\mathcal L= (L_𝛼)_𝛼∈ A](https://853417.krfdn.asia/plugins/generic/latexRender/cache/f104b5a1773d019766a7d89e2abf52b3.png)
![f (\mathcal L) := ( f(L𝛼))_𝛼](https://853417.krfdn.asia/plugins/generic/latexRender/cache/8761ac36a6db78a49bd5d8210f58c98c.png)
![\Phi = (\Phi_𝛼)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/bd2432a35d5cb143b5255dbee763d01d.png)
![f (\mathcal L)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/5c29250d3641a3d410a4bf1409fa01a5.png)
![( f_𝛼( L_𝛼))](https://853417.krfdn.asia/plugins/generic/latexRender/cache/9de1cb1d622474d9a3b191c704e6c83f.png)
![(f_𝛼)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a01836813dc5760492e033e975df41ca.png)
DOI Code:
10.1285/i15900932v12p291
Full Text: PDF