Large quartic groups on translation planes, I --odd order: Characterization of the Hering planes
Abstract
The Hering planes of order
and the Walker planes of order
are shown to be the unique classes of planes with spreads in
or
, respectively, admitting at least two 'large' quartic groups with distinct centers.
![q^2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/16db377156b6a727777f391bcbe853c0.png)
![5^2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/b3a51289e6b2b788da1f219db23f1d8c.png)
![PG(3,q)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/4a9271d89a2558a43a5b9866c0a1cc9a.png)
![PG(3,5)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/3a8fb1deaab73f7470715f059134e54a.png)
DOI Code:
10.1285/i15900932v23n1p151
Keywords:
Quartic group; Translation plane; Hering plane
Classification:
51E23; 51A40
Full Text: PDF