On the extrinsic principal directions of Riemannian submanifolds
Abstract
The Casorati curvature of a submanifold
of a Riemannianmanifold
is known to be the normalized square of the lengthof the second fundamental form,
, i.e., inparticular, for hypersurfaces,
, whereby
are the principal normalcurvatures of these hypersurfaces. In this paper we in additiondefine the Casorati curvature of a submanifold
in aRiemannian manifold
at any point
of
in any tangentdirection
of
. The principal extrinsic (Casorati)directions of a submanifold at a point are defined as an extensionof the principal directions of a hypersurface
at a point in
. A geometrical interpretation of the Casorati curvature of
in
at
in the direction
is given. Acharacterization of normally flat submanifolds in Euclidean spacesis given in terms of a relation between the Casorati curvaturesand the normal curvatures of these submanifolds.
![M^n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1fa54e4819af0fbfefc2c851abea561b.png)
![{\widetilde{M}^{n + m}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/514d638fb73a96099df78aef3abfe43b.png)
![C = \frac{1}{n}\|h\|^2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/55e9bc688721aab53bc24cf5e77da0dd.png)
![C = \frac{1}{n}(k_1^2 + \dots +k_n^2)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/51e28b67d4157fdcf2eea9ffa0674eed.png)
![k_1,\dots,k_n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/3b9a4c0c40788d7fcc9033d376bf52a0.png)
![M^n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1fa54e4819af0fbfefc2c851abea561b.png)
![{\widetilde{M}^{n + m}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/514d638fb73a96099df78aef3abfe43b.png)
![p](https://853417.krfdn.asia/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![M^n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1fa54e4819af0fbfefc2c851abea561b.png)
![u](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7b774effe4a349c6dd82ad4f4f21d34c.png)
![M^n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1fa54e4819af0fbfefc2c851abea561b.png)
![M^n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1fa54e4819af0fbfefc2c851abea561b.png)
![{\widetilde{M}^{n + 1}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/2f749cacf81a024235cb22b86ab9f274.png)
![M^n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/1fa54e4819af0fbfefc2c851abea561b.png)
![{\widetilde{M}^{n + m}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/514d638fb73a96099df78aef3abfe43b.png)
![p](https://853417.krfdn.asia/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![u](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7b774effe4a349c6dd82ad4f4f21d34c.png)
DOI Code:
10.1285/i15900932v29n2p41
Keywords:
Casorati curvature; principal direction; normal curvature; squared length of the second fundamental form
Casorati curvature; principal direction; normal curvature; squared length of the second fundamental form
Full Text: PDF