Finite and locally solvable periodic groups with given intersections of certain subgroups
Abstract
Let G be a group and p be a prime. We say that two subgroups
are incident if either
or
. A group G is an
-group if, for any finite non-incident subgroups
of G, a p-Sylow subgroup of
is cyclic.
In this paper we give a complete classification of solvable and locally solvable periodic
-groups.
![H, K](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a9de728fd0d6f29e043936b3e4c92758.png)
![H ∩ K = H](https://853417.krfdn.asia/plugins/generic/latexRender/cache/b2033a010d97100d3fd73650eb5de07f.png)
![H∩ K = K](https://853417.krfdn.asia/plugins/generic/latexRender/cache/8311fd3815876591103f8e2bd1a3bae4.png)
![IC<sub>p</sub>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/223597192a798a2c533c3c804a946533.png)
![H, K](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a9de728fd0d6f29e043936b3e4c92758.png)
![H ∩ K](https://853417.krfdn.asia/plugins/generic/latexRender/cache/aa4349055bab4415e63fe83f303ad0a2.png)
![IC<sub>p</sub>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/223597192a798a2c533c3c804a946533.png)
DOI Code:
10.1285/i15900932v14n2p147
Full Text: PDF