On Mallios
-connections as connections on principal sheaves
Abstract
Motivated by [5], we associate a vector sheaf
with a principal sheaf
, called sheaf of frames of
. We show that
-connections on
correspond to connections on
. The latter are defined by an appropriate family of local matrices or, equivalently, by a morphism acting on
, analogously to the operator of an \mathcal A$-collection.
![\varepsilon](https://853417.krfdn.asia/plugins/generic/latexRender/cache/f8b1c5a729a09649c275fca88976d8dd.png)
![\mathcal P\varepsilon)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/d0bd38f8f2cc89c3c0458b348ce1cfd5.png)
![\varepsilon](https://853417.krfdn.asia/plugins/generic/latexRender/cache/f8b1c5a729a09649c275fca88976d8dd.png)
![\mathcal A](https://853417.krfdn.asia/plugins/generic/latexRender/cache/861df74596abb976c25bcec0d09e08c9.png)
![\varepsilon](https://853417.krfdn.asia/plugins/generic/latexRender/cache/f8b1c5a729a09649c275fca88976d8dd.png)
![\mathcal P(\varepsilon)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a30118244c764ddbeba409946ab54627.png)
![\mathcal P(\varepsilon)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a30118244c764ddbeba409946ab54627.png)
DOI Code:
10.1285/i15900932v14n2p237
Full Text: PDF