Dual parallelisms
Abstract
Assume that
is a parallelism in
, for
a field, that admits a collineation group
that fixes one spread
and acts transitively on the remaining spreads of
. If
contains suitable central collineations of
then it is shown that the dual parallelism is a parallelism that can never be isomorphic to the original. The results show that the Johnson parallelisms of Hall or Knuth type, the Johnson-Pomareda parallelisms of type
and all of the "derived" parallelisms produce dual parallelisms which are parallelisms but are nonisomorphic to the original parallelism.
![\rho](https://853417.krfdn.asia/plugins/generic/latexRender/cache/d2606be4e0cd2c9a6179c8f2e3547a85.png)
![PG(3,K)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/fd34689fc1a3da40a3a46600f63263b6.png)
![K](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a5f3c6a11b03839d46af9fb43c97c188.png)
![G](https://853417.krfdn.asia/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\Sigma](https://853417.krfdn.asia/plugins/generic/latexRender/cache/025b3f94d79319f2067156076bf05243.png)
![\rho](https://853417.krfdn.asia/plugins/generic/latexRender/cache/d2606be4e0cd2c9a6179c8f2e3547a85.png)
![G](https://853417.krfdn.asia/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\Sigma](https://853417.krfdn.asia/plugins/generic/latexRender/cache/025b3f94d79319f2067156076bf05243.png)
![f](https://853417.krfdn.asia/plugins/generic/latexRender/cache/8fa14cdd754f91cc6554c9e71929cce7.png)
DOI Code:
10.1285/i15900932v21n1p137
Keywords:
Parallelisms; Dual parallelisms
Classification:
51E23; 51A40
Full Text: PDF