On ideal and subalgebra coefficients in a class k-algebras
Abstract
Let k be a commutative field with prime field
and A a k- algebra. Moreover, assume that there is a k-vector space basis
of A that satisfies the following condition: for all
,the product
is contained in the
-vector space spanned by
. It is proven that the concept of minimal field of definition from polynomial rings and semigroup algebras can be generalized to the above class of (not necessarily associative) k-algebras. Namely, let U be a one-sided ideal in A or a k-subalgebra of A. Then there exists a smallest
with U-as one-sided ideal resp. as k-algebra—being generated by elements in the
-vector space spanned by
.
![k<sub>0</sub>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e91d2c65a39697343245014ee87d7f12.png)
![ω](https://853417.krfdn.asia/plugins/generic/latexRender/cache/45bf03a575f6e81359314e906fb2bff3.png)
![ω<sub>1</sub>, ω<sub>2</sub> ∈ ω](https://853417.krfdn.asia/plugins/generic/latexRender/cache/07ca2c4beaa418714f694db7350d1870.png)
![ω<sub>1</sub>ω<sub>2</sub>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/638f4abfb4fefc4dd19a76ab43bf9783.png)
![k<sub>0</sub>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e91d2c65a39697343245014ee87d7f12.png)
![ω](https://853417.krfdn.asia/plugins/generic/latexRender/cache/45bf03a575f6e81359314e906fb2bff3.png)
![k' ≤ k](https://853417.krfdn.asia/plugins/generic/latexRender/cache/8fcd90e1b31833a8e392e7ef0bbcfdae.png)
![k'](https://853417.krfdn.asia/plugins/generic/latexRender/cache/d6a72fc99e4efef53dc8969ba2f042d2.png)
![ω](https://853417.krfdn.asia/plugins/generic/latexRender/cache/45bf03a575f6e81359314e906fb2bff3.png)
DOI Code:
10.1285/i15900932v27n1p77
Keywords:
Field of definition; Non-associative k-algebra; One-sided ideal; k-subalgebra
Full Text: PDF PS