Counting the generalized twisted fields
Abstract
In this paper we exploit a theorem of Biliotti, Jha, and Johnson exhibiting a
procedure to count the number of non- isotopic generalized twisted fields of orders
where
which is denoted by
.We show that
is a polynomial in p that is sharply bounded below by
and bounded above by a polynomial of degree
.
![p<sup>n</sup>](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7a95e94cd8a1f109da256a6907402689.png)
![p ≥ 3](https://853417.krfdn.asia/plugins/generic/latexRender/cache/00d079746197f7055b809f63ef52165f.png)
![g(p<sup>n</sup>)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/856090bcade7a79d91c95276081fe501.png)
![g (p<sup>n</sup>)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e8413ef30a66b532c8ec486f6214eb1d.png)
![{n-2 \choose 2}(p-2)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a4fd04af31286698e59f8aec53c7729e.png)
![\lfloor{n \over 2}\rfloor](https://853417.krfdn.asia/plugins/generic/latexRender/cache/30c41e83dd0376fc0923cb0530400a46.png)
DOI Code:
10.1285/i15900932v27n1p53
Keywords:
Semifield; Generalized twisted field; Projective plane; Finite geometry
Full Text: PDF PS