Congruences for (2, 3)-regular partition with designated summands
Abstract
Let
count the number of partitions of
with designated summands in which parts are not multiples of
or
. In this work, we establish congruences modulo powers of 2 and 3 for
. For example, for each \quad
and
\quad
and ![PD_{2, 3}(4\cdot3^{\alpha+3}n+10\cdot3^{\alpha+2})\equiv 0 \pmod{3}.](https://853417.krfdn.asia/plugins/generic/latexRender/cache/02816d326ff827d640418906e8163693.png)
![PD_{2, 3}(n)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e135d8e00142f1d702430ff0e62c2f21.png)
![n](https://853417.krfdn.asia/plugins/generic/latexRender/cache/7b8b965ad4bca0e41ab51de7b31363a1.png)
![2](https://853417.krfdn.asia/plugins/generic/latexRender/cache/c81e728d9d4c2f636f067f89cc14862c.png)
![3](https://853417.krfdn.asia/plugins/generic/latexRender/cache/eccbc87e4b5ce2fe28308fd9f2a7baf3.png)
![PD_{2, 3}(n)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/e135d8e00142f1d702430ff0e62c2f21.png)
![n\ge0](https://853417.krfdn.asia/plugins/generic/latexRender/cache/38143f36753edf99fb733f46d9a447c6.png)
![\alpha\geq0](https://853417.krfdn.asia/plugins/generic/latexRender/cache/0a5f4c73a9e601859ef6bb3746e12f12.png)
![PD_{2, 3}(6\cdot4^{\alpha+2}n+5\cdot4^{\alpha+2})\equiv 0 \pmod{2^4}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/a44f7d7b70a1e51ac852d199b818ad99.png)
![PD_{2, 3}(4\cdot3^{\alpha+3}n+10\cdot3^{\alpha+2})\equiv 0 \pmod{3}.](https://853417.krfdn.asia/plugins/generic/latexRender/cache/02816d326ff827d640418906e8163693.png)
DOI Code:
10.1285/i15900932v36n2p99
Keywords:
Designated summands; Congruences; Theta functions; Dissections
Full Text: PDF