On the Action of
on ![\hat{\mathbb{Q}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/b600b10f9fa6f6b6c8444216cd44529d.png)
Abstract
In this paper we examine
-orbits on
and the suborbital graphs for
. Each such suborbitalgraph is a disjoint union of subgraphs whose vertices form a blockof imprimitivity for
. Moreover, these subgraphs areshown to be vertex
-transitive and edge
-transitive. Finally, necessary and sufficient conditions forbeing self-paired edge are provided.
![\Gamma ^0(N)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/5a7a861c4ee8456b1ad3dd6dc6f4318a.png)
![\hat{\mathbb{Q}}](https://853417.krfdn.asia/plugins/generic/latexRender/cache/b600b10f9fa6f6b6c8444216cd44529d.png)
![\Gamma ^0(N)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/5a7a861c4ee8456b1ad3dd6dc6f4318a.png)
![\Gamma ^0(N)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/5a7a861c4ee8456b1ad3dd6dc6f4318a.png)
![\Gamma ^0(N)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/5a7a861c4ee8456b1ad3dd6dc6f4318a.png)
![\Gamma^0(N)](https://853417.krfdn.asia/plugins/generic/latexRender/cache/f8ccf7b6f11e1dcc89142577a116f2c0.png)
DOI Code:
10.1285/i15900932v30n2p141
Keywords:
Congruence groups; Transitive and Imprimitive action; Suborbital graphs
Full Text: PDF