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1 Introduction

The Taylor formula is a quite old topic, more than two centuries old, but
mathematicians continue even nowadays to publish results in this direction, for
a handful examples of this contemporary research, see e.g. [1, 14, 20].

By a Taylor series of a function f centered in the point x0 we mean the
following series expansion

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k. (1)
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By Taylor formula we designate the representation of a function f as the
sum of a polynomial and an extra term, namely

f(x) = Pn(x) + rn(x) (2)

where Pn is the Taylor polynomial of degree n

Pn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k

and rn(x) is the Taylor remainder given simply by f(x)− Pn(x) =: rn(x).

Throughout the paper, we will not use an unified presentation when dealing
with Taylor formula, following the historical presentation in each particular
article. It should be pointed out that some of the proofs given may not pass
the modern standards of rigor, but following the historical presentation will
highlight the ideas instead of the formalism.

Besides consulting the original references which we cited, we also relied in
some old overviews of Taylor formula, some appearing in book format [15] and
others in article form [17].

2 Historical Overview

In the 17th century series expansion of particular functions appeared by the
hands of European mathematicians, viz. in 1668 J. Gregory published the series
expansion of arctanx in his Exercitationes Geometricae, see also [30] for some
historical background regarding the arctangent series expansion. In the same
year N. Mercator gave the series expansion of ln(1+x) in his Logarithmotechnia
and I. Newton obtained the series expansion for (1 +x)α, sinx, cosx and expx,
which appeared in the correspondence with Leibniz in 1676, see the book [32]
for more details.

What is less well-known is that the Indian Kerala school of Mādhava already
knew the series expansion of arctanx, sinx and cosx before 1540, for more
details see [8, 9, 32].

We now survey some techniques to obtain Taylor series expansion as well as
Taylor reminder for the Taylor formula. Some of the proofs are highly artificial,
and in this sense we would like to give the following quotation [18]:

It is also the one result that I was dreading lecturing, at least with the
Lagrange form of the remainder, because in the past I have always
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found that the proof is one that I have not been able to understand
properly. I don’t mean by that that I couldn’t follow the arguments
I read. What I mean is that I couldn’t reproduce the proof without
committing a couple of things to memory, which I would then forget
again once I had presented them. Briefly, an argument that appears
in a lot of textbooks uses a result called the Cauchy mean value
theorem, and applies it to a cleverly chosen function.

Timothy Gowers, recipient of the Fields medal

2.1 Johan Bernoulli

It seems that the first mathematician to give a general formula for series
expansion of a function was J. Bernoulli (see Remark 1 for some dispute of this
statement) which published the formula

x∫
0

ϕ(x) dx = xϕ(x)− 1

2!
x2ϕ′(x) +

1

3!
x3ϕ′′(x)− · · · (3)

in Acta eruditorum in 1694 (see also [4]). The formula (3) follows from integrat-
ing both sides of the identity

ϕ(x) dx =
n∑
k=1

(−1)k+1

k!

[
kxk−1ϕ(k−1)(x) + xkϕ(k)(x)

]
dx+

(−1)nxn

n!
ϕ(n)(x) dx

and imposing that the term In vanishes when n→∞, where

In :=
(−1)n

n!

x∫
0

xnϕ(n)(x) dx.

This argument appeared in the textbook of Arbogast in 1800, see [3, p.334]. It
should also be noted that iterated integration by parts applied to

∫ x
0 ϕ(x) dx

also yields (3).

Remark 1. In [37] it is stated that J. Gregory obtained Taylor’s theorem
in 1671, where the finding was communicated to J. Collins, secretary of the
Royal Society. The evidence of such statement is preserved in the library of the
University of St. Andrews which we cannot verify and see the actual formulation
and idea of proof.



4 L.-E. Persson, H. Rafeiro, P. Wall

2.2 Brooke Taylor

In 1715 it appears the book Methodus Incrementorum in which we can find
the formula

f(x+ h) = f(x) + hf ′(x) + · · ·+ hn

n!
f (n)(x) + · · · (4)

without any conditions for the validity of such representation. To obtain such
formula, Taylor used the theory of finite differences, which can be summarized
in the following way: by ∆y, ∆2y, etc. we denote the finite difference of y = f(x)
given by ∆f(x; ∆x) := f(x+ ∆x)− f(x). Using this notion we can write

f(x+ ∆x) = f(x) + ∆f(x; ∆x) = y + ∆y.

Via induction we obtain

f(x+ k∆x) =

k∑
j=0

(
k

j

)
∆jy, (5)

where ∆ny := ∆
(
∆n−1y

)
. Taking k∆x = h, from (5) we get

f(x+ h) = y + h
∆y

∆x
+
h(h−∆x)

1 · 2
∆2y

∆x2
+ · · · . (6)

When ∆x→ 0 (or equivalently, when k →∞), due to the relation

lim
∆x→0

∆ky

∆xk
=

dky

dxk
,

we formally obtain (4).

Remark 2. The formula (4) follows in fact from the formula (3) after some
easy manipulations (take ϕ(x) = f ′(h−x) in (3) and change x by h and h by x+h
and we obtain (4)). In [5, p.584] Bernoulli claimed priority in the discovery of
the Taylor formula (see also [15]). Hence, maybe it should be historically correct
to call the Taylor’s formula for Bernoulli-Taylor’s formula.

2.3 Colin Maclaurin

In the Treatise of Fluxions of 1742 of Maclaurin it appeared a new proof
of Taylor formula, see [24, Nr. 751]. Admitting that the function f is infinitely
differentiable and can be expanded into a series of the form

f(x) = a0 + a1x+ a2x
2 + · · · (7)

the coefficients an can be obtained differentiating the equality (7), thus obtaining
f (n)(0) = n!an. This proof fails to justify the fact that we can differentiate
termwise and also assumes a priori that we can expand the function in a series.
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Remark 3. It seems that similar reasoning was already used 12 years before
by James Stirling in his Methodus Differentialis, see the original Latin reference
in [33, p.102] or an annotated English translation in [35, p.117].

2.4 Joseph-Louis Lagrange

2.4.1 Taylor Series

Another method to obtain the Taylor series was devised by Lagrange and
appeared in a 1772 article in Nouveaux Mémoires de l’Académie Royale des
Sciences et Belles-Lettres de Berlin, see [22]. Supposing that the function u can
be expanded in a series u(x) =

∑∞
k=0 akx

k, then, by replacing x with x+ h and
rearranging the terms, we obtain

u(x+ h) = u(x) +Ah+Bh2 + Ch3 + · · · , (8)

where A,B,C, · · · are functions of x. Changing first x by x + ω in (8) and
changing h by h+ω again in (8) we obtain two different expansion of u(x+h+ω).
Using Newton’s binomial formula, with some tedious computations, we obtain
exactly the coefficients of Taylor series (1). The proof also has some problems,
namely it assumes the existence of the series expansion and the permissibility
of rearranging the terms of a series.

Remark 4. The aforementioned technique is based, in a sense, on the proof
of the fact that if

P (x) = a0x
n + a1x

n−1 + · · ·+ an (9)

is a polynomial of degree n, the following formula is valid

P (x+ h) = P (x) + hP ′(x) +
h2

2!
P ′′(x) + . . .

hn

n!
P (n)(x). (10)

Changing x to x+h in (9) we obtain, after applying Newton’s binomial theorem
and rearranging the terms,

P (x+ h) =a0x
n + a1x

n−1 + · · ·+ an−1x+ an+

+ h
[
na0x

n−1 + (n− 1)a1x
n−2 + · · ·+ an−1

]
+
h2

2!

[
n(n− 1)a0x

n−2 + (n− 1)(n− 2)a1x
n−3 + . . . an−2

]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

+
hk

k!

[
[n]ka0x

n−k + [n− 1]ka1x
n−k+1 + . . . ak

]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ a0h

n,
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where [n]k := n(n− 1) . . . (n− k + 1). From this equality, (10) is immediate.

2.4.2 Taylor remainder

It seems that Lagrange was the first to study the conditions to expand a
function in Taylor series.

In 1797 in his Théorie des Fonctions Analytique the following formula was
given

f(x+ h) = f(x) + hf ′(x) + · · ·+ hn−1

(n− 1)!
f (n−1)(x) +Rn, (11)

where

Rn =
hn

n!
f (n)(x+ θh) (12)

with θ between 0 and 1. If Rn → 0 when n → ∞, then the Taylor series (1) is
valid, else it does not hold.

The proof given by Lagrange of relation (12) was by two distinct methods.

Lagrange Method 1. This method uses an auxiliary parameter z and
appeared in Théorie des Fonctions Analytique, see [23, Nr. 35]. Define P (x, z)
by the equation

f(x+ h) =
n−1∑
k=0

hkzk

k!
f (k)(x+ h− hz) + hnP (x, z) (13)

and note that P (x, 0) = 0. Differentiating (13) with respect to the variable z
we obtain

hn
∂P

∂z
=
hnzn−1

(n− 1)!
f (n)(x+ h− hz),

which entails

P (x, z) =
1

(n− 1)!

z∫
0

zn−1f (n)(x+ h− hz) dz.

Taking z = 1 we obtain Taylor formula (11) with remainder Rn in integral form
given by

Rn =
hn

(n− 1)!

1∫
0

zn−1f (n)(x+ h− hz) dz. (14)

By the first-mean value theorem for integrals and assuming the continuity of
the function f (n)(x + h − hz) in the interval 0 ≤ z ≤ 1 we obtain exactly (12)
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from (14). It should be noted that Lagrange proved a particular case of the
first-mean value theorem for integrals to obtain the result, since it seems that
the first-mean value theorem for integrals was proved in 1821 by Cauchy, as
claimed in [17].

Lagrange Method 2. In his 1806 Leçons sur le Calcul des Fonctions,
Lagrange obtained the same result using the criterion for monotonicity of a
function via inspection of the sign of the derivative. Namely, let us define the
following functions

ϕn(ξ) =f (n)(x+ ξ)− L
ϕn−1(ξ) =f (n−1)(x+ ξ)− f (n−1)(x)− Lξ

ϕn−2(ξ) =f (n−2)(x+ ξ)− f (n−2)(x)− f (n−1)(x)ξ − Lξ
2

2!
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ϕ0(ξ) =f(x+ ξ)− f(x)− f ′(x)ξ − · · · − f (n−1)(x)
ξn−1

(n− 1)!
− Lξ

n

n!
.

It is immediate that ϕn is the derivative of ϕn−1 and so on. Moreover ϕk(0) = 0
for all k = 0, · · · , n− 1 and ϕn(0) = f (n)(x)−L. For definiteness, let h > 0 and
take S = maxξ∈[0,h] f

(n)(x + ξ) and I = minξ∈[0,h] f
(n)(x + ξ). If ϕn(ξ) is non-

negative in certain interval [0, h] then ϕ0(ξ) is also non-negative, and similar
reasoning for non-positive. Using the derivative criterion for monotonicity of
functions we obtain

Ihn

n!
< f(x+ h)− f(x)− f ′(x)h− · · · − f (n−1)(x)

hn−1

(n− 1)!
<
Shn

n!
,

which implies, from the intermediate value property of continuous functions,
that there exists a θ such that

f(x+ h) =

n−1∑
k=0

hk

k!
f (k)(x) +

hnf (n)(x+ θh)

n!
.

Similar reasoning applies when h < 0. It should be noted that the intermediate
value theorem was proved later by Bolzano and Cauchy, but it was considered
by Lagrange as evident.

2.5 Sylvestre François Lacroix

In the 1819 book Traité du Calcul Differéntiel et du Calcul Intégral [21],
Lacroix gave a proof of the Lagrange integral remainder (14) using an idea of
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D’Alembert. Nowadays a similar idea, using n-times iteration of the fundamental
theorem of calculus and integration by parts, is widely used and is one of the
easiest ways to obtain a Taylor remainder, see e.g. [38]. We now give the idea
of proof in [21], which is not so straightforward and uses antiderivatives.

Let U(x) = u(x+ h) and u(x) be functions. We can start to write

U = u+ P, (15)

where P depends on x and h and u only depends on x. Since dU
dh = dP

dh we

can write (15) as U = u +
∫

dU
dh dh. Now we define dU

dh
:= du

dx + Q from which

Q =
∫

d2U
dh2

dh2 which entails that
∫

dU
dh dh = du

dxh +
∫∫

d2U
dh2

dh2 and this gives

the formula U = u+ du
dxh+

∫∫
d2U
dh2

dh2. Letting d2U
dh2

= d2u
dx2

+ R we obtain that
d3U
dh3

= dR
dh from which we get R =

∫
d3U
dh3

dh. We then obtain

U = u+
du

dx
h+

d2u

dx2

h2

2!
+

∫∫∫
d3U

dh3
dh3.

The process can be now iterated and finally we obtain

U = u+
du

dx
h+

d2u

dx2

h2

2!
+ · · ·+ dn−1u

dxn−1

hn−1

(n− 1)!
+

∫
· · ·
∫

︸ ︷︷ ︸
n-times

dnU

dhn
dhn.

Defining H = dnU
dhn and after some calculations based on the Cauchy formula for

repeated integration we obtain the desired result, see details in [21, p.396].

2.6 Augustin Louis Cauchy

In 1826 the so-called Taylor remainder in Cauchy form

Rn =
hn(1− θ)n−1

(n− 1)!
f (n)(x+ θh) (16)

for the Taylor formula

f(x+ h) = f(x) + hf ′(x) + · · ·+ hn−1

(n− 1)!
f (n−1)(x) +Rn

appeared in Exercices de Mathemátiques, see [10, p.41]. Cauchy applied La-
grange’s finite-increment theorem ϕ(x+h) = ϕ(x)+hϕ′(x+θh) to the function

ϕ(z) = f(x+ h)−
n−1∑
k=0

(x+ h− z)k

k!
f (k)(z)
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entailing

f(x+ h) = f(x) + hf ′(x) + · · ·+ hn−1

(n− 1)!
f (n−1)(x) +Rn

with Rn given by (16), since

ϕ′(z) = −(x+ h− z)n−1

(n− 1)!
f (n)(z).

due to “telescopic” cancellations.

2.7 Oscar Schlömilch

The so-called Schlömilch remainder of Taylor formula appeared in the text-
book of Schlömilch Handbuch der Differentialrechnung published in 1847-1848.
This remainder in its general form is given by

Rn =
hn−1(1− θ)n−1

(n− 1)!

ϕ(x+ h)− ϕ(x)

ϕ′(x+ θh)
f (n)(x+ θh), (17)

for the Taylor formula

f(x+ h) = f(x) + hf ′(x) + · · ·+ hn−1

(n− 1)!
f (n−1)(x) +Rn.

The remainder (17) is obtained applying Cauchy’s finite increment theorem

ψ(x+ h)− ψ(x)

ϕ(x+ h)− ϕ(x)
=
ψ′(x+ θh)

ϕ′(x+ θh)
, 0 < θ < 1, (18)

to the function

ψ(z) = f(x+ h)− f(z)− (x+ h− z)f ′(z)− · · · − (x+ h− z)n−1

(n− 1)!
f (n−1)(z).

Applying the particular function ϕ(z) = (x+h−z)p to (17) we get the remainder

Rn =
hn(1− θ)n−p

(n− 1)!p
f (n)(x+ θh), (19)

which is denoted by Schlömilch-Roche remainder (cf. Remark 5). The proof re-
lies on the Cauchy finite increment theorem, which in its original formulation of
Cauchy (and used by Schlömilch) required that ϕ′ and ψ′ were continuous func-
tions. Later on, Ossian Bonnet improved the result and the assumption on the
continuity of the derivatives were dropped, this improvement already appeared
in 1868 in Joseph Alfred Serret’s Cours de Calcul Différentiel et Intégral.
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Remark 5. In a private letter to the editor Joseph Liouville of the J. Math.
Pures Appl. Schlömilch called the attention to the fact that the formula (19),
which was published in that journal by E. Roche, was a particular case of the
general formula obtained some years before. The proof of Roche was different in
spirit since it was based on integral calculus, as can be seen in the next section.

2.8 Édouard Albert Roche

In 1858 (see [26]) the Schlömilch-Roche remainder (19) was obtained us-
ing the integral remainder (14) and the first-mean value theorem for integrals.
Namely

Rn =
hn

(n− 1)!

1∫
0

zp−1zn−pf (n)(x+ h− hz) dz

=
Θn−phn

(n− 1)!p
f (n)(x+ h−Θh),

which is nothing else than (19) taking θ = 1−Θ.
In 1860 Roche [27] gave a new proof of (19) based on differential calculus

and ideas already present in the Cours d’Analyse of Sturm. Taking

Rn = f(z)− f(x)− (z − x)f ′(x)− · · · − (z − x)n

n!
f (n)(x)

we obtain
d

dx

(
Rn −

(z − x)p+1C

n!(p+ 1)

)
=

(z − x)p

n!

(
C − ϕ(x)

)
︸ ︷︷ ︸

ψ(x)

,

where C is a constant and ϕ(x) = (z−x)n−pf (n+1)(x). Taking, for definiteness,
x < z, M = supξ∈[x,z] ϕ(ξ) and m = infξ∈[x,z] ϕ(ξ), we obtain

(z − x)p+1m

n!(p+ 1)
< Rn <

(z − x)p+1M

n!(p+ 1)

since the derivative will be positive (or negative) and
(
Rn − (z−x)p+1C

n!(p+1)

) ∣∣∣∣
x=z

=

0. When ϕ(x) is a continuous function, then there exists N such that Rn =
(z−x)p+1N
n!(p+1) . Similar considerations can be made for z < x.

In 1864 Roche [28] also obtained a generalization of Taylor formula, which
is a particular case of the Gomes Teixeira formula (30).



Historical synopsis of the Taylor remainder 11

2.9 Homersham Cox

In 1851 appeared the proof of Cox [11] which, as stated in [37], is the base
of the majority of modern textbook proofs. The advantage of this proof is that
it relies solely on Rolle’s theorem which has a nice geometric and cinematic
interpretation. Define

F (z) := −f(x+ h) +
n−1∑
k=0

(x+ h− z)k

k!
f (k)(z)

+
(x+ h− z)p

hp

f(x+ h)−
n−1∑
k=0

hk

k!
f (k)(x)

 . (20)

Noting that F (x) = F (x+ h), by Rolle’s theorem we have F ′(x+ θh) = 0 with
0 < θ < 1, where F ′(z) is given by

F ′(z) =
(x+ h− z)n−1

(n− 1)!
f (n)(z)

− p(x+ h− z)p−1

hp

f(x+ h)−
n−1∑
k=0

hk

k!
f (k)(x)

 . (21)

Choosing z = x+ θh in (21), when p = n we recover the original proof of Cox,
obtaining the Lagrange remainder (11) and when p is arbitrary we recover the
Schlömilch-Roche remainder (19).

2.10 Turquan

In 1863 the Lagrange remainder (12) was obtained in [34] using iteration
and Lagrange’s finite-increment theorem

g(x+ h) = g(x) + hg′(x+ θh). (22)

Let us take

f(x+ h) = f(x) +
h

1
f ′(x) +

h2

2!
f ′′(x) + · · ·+ hn−1

(n− 1)!
f (n−1)(x) + hnR

from which we get that there exists 0 < θ1 < 1 such that

f ′(x+ θ1h) = f ′(x) +
h1

2!
f ′′(x) + · · ·+ hn−2

(n− 1)!
f (n−1)(x) + hn−1R. (23)
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Applying the same reasoning we obtain

f ′′(x+ θ1θ2h) =
f ′′(x)

2θ1
+

h

3!θ1
f ′′′(x) + . . .+

hn−3

(n− 1)!θ1
f (n−1)(x) +

hn−2

θ1
R, (24)

and taking h = 0 in (24) it follows that θ12! = 1, from which

f ′′(x+ θh) = f ′′(x) +
h

3
f ′′′(x) + . . .+

hn−3

1 · 3 · · · (n− 1)
f (n−1)(x) + 1 · 2 · hn−2R.

Iterating the previous process, redefining in each line the value of θ, we obtain

f ′′′(x+ θh) = f ′′′(x) + . . .+ 3!R · hn−3

f iv(x+ θh) = f iv(x) + . . .+ 4!R · hn−4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (n)(x+ θh) = n!R,

from which we get (12).

2.11 Justin Bourget

In 1870 another formula for the Taylor remainder was obtained in [7]. Using
Cauchy’s finite increment theorem (18) we get

ϕ(x)

ψ(x)
=
ϕ′(x+ θ(x0 − x))

ψ′(x+ θ(x0 − x))
, 0 < θ < 1, (25)

whenever ϕ(x0) = ψ(x0) = 0. Let us take

ϕ(x) = f(x0)−
n−1∑
k=0

(x0 − x)k

k!
f (k)(x)

and ψ(x) = ω(x0−x) where ω is a differentiable function satisfying the condition
ω(0) = 0. Direct computations show that

ϕ′(x) = −(x0 − x)n−1

(n− 1)!
f (n)(x)

and ψ′(x) = −ω′(x0−x). Taking all previous remarks into account we arrive at

f(x0) =

n−1∑
k=0

(x0 − x)k

k!
f (k)(x)

+
ω(x0 − x)

ω′
(
(x0 − x

)
(1− θ))

(1− θ)n−1(x0 − x)n−1

(n− 1)!
f (n)((x0 − x)(1− θ)). (26)
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Taking x0 = x+ h in (26) we obtain

f(x+ h) =

n−1∑
k=0

hk

k!
f (k)(x) +Rn,

where

Rn =
ω(h)

ω′(h(1− θ))
(1− θ)n−1hn−1

(n− 1)!
f (n)(h(1− θ)). (27)

Specifying ω(x) = xp we obtain the Schlömilch-Roche remainder (19), from
which follows Lagrange and Cauchy remainders.

2.12 Jules Koenig

In 1874 Koenig [19] developed a new way to obtain the Taylor series. He
starts with the fact that the series

1 +
z

1!
+
z2

2!
+ . . .

is convergent. Multiplying term by term the previous series for some bounded
numbers will not change the nature of the series, taking the quantities ϕ0(h),
ϕ1(h), ϕ2(h), . . . , we obtain

ϕ0(h) + ϕ1(h)
z

1
+ ϕ2(h)

z2

2!
+ . . . ,

which can be considered a function of two variables Φ(x, z). Studying under
what conditions this two variable function depends in fact of only one variable
z + h leads to the Taylor function, for details see [19]. This is a nice idea but it
gives no expression for the remainder.

2.13 Jean Gaston Darboux

In 1876 (see [12]), Darboux obtained the following formula

ϕ(n)(0)
[
f(x+ h)− f(x)

]
=

n∑
k=1

(−1)k+1hk
[
ϕ(n−k)(1)f (k)(x+ h)− ϕ(n−k)(0)f (k)(x)

]

+ (−1)nhn+1

1∫
0

ϕ(t)f (n+1)(x+ ht) dt, (28)
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where ϕ(t) is a polynomial of degree n. The aforementioned formula was ob-
tained applying the Newton-Leibniz formula

1∫
0

Φ′(t) dt = Φ(1)− Φ(0)

to the unwieldy function

Φ(t) =
n∑
k=0

(−1)kϕ(n−k)(t)hkf (k)(x+ ht).

From formula (28) we can obtain, choosing ϕ(t) = tn(t− 1)n and changing n to
2n, the following expression

f(x+ h)− f(x)

=

2n∑
k=1

(−1)k+1
(

2n
k

)
hk

(2n− k + 1) · · · 2n

[
f (k)(x+ h)− (−1)kf (k)(x)

]

+
(−1)nh2n+1

(2n)!

1∫
0

tn(1− t)nf (2n+1)(x+ ht) dt.

2.14 E. Amigues

In 1880, using a different technique, the remainder (27) was obtained in [2],
where some strong assumptions are imposed a priori, namely it is supposed that
the function f can be expanded as a Taylor series as f(x+h) =

∑∞
k=0

hk

k! f
(k)(x).

To obtain a remainder for the n-term of the Taylor polynomial, taking A as a
constant which will be found latter and some prescribed function ϕ satisfying
the condition ϕ(0) = 0, we write f(x+ h) as

f(x+ h) =
n∑
k=0

hk

k!
f (k)(x) +Aϕ(h) +

−Aϕ(h) +
∞∑

k=n+1

hk

k!
f (k)(x)


︸ ︷︷ ︸

:=F (x)

due to the assumption of series expansion of f . We now choose A in such a way
that F (x) = 0, which gives the remainder Rn = Aϕ(h). To obtain A we proceed
in the following way: by replacing x and h by z and x+ h− z, respectively, we
get

F (z) = −Aϕ(x+ h− z) +
∞∑

k=n+1

(x+ h− z)k

k!
f (k)(z).
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Since F (x) = 0, due to the definition of A, and the fact that F (x+h) = 0 (since
we supposed that ϕ(0) = 0), by Rolle’s theorem we obtain that there exists
0 < θ < 1 for which F ′(x+ θh) = 0. The derivative of F is simply

F ′(z) = Aϕ′(x+ h− z)− (x+ h− z)n

n!
f (n+1)(z)

due to “telescopic” cancellations. From the above considerations we obtain the
Taylor remainder (27)

Rn = Aϕ(h) =
ϕ(h)

ϕ′(h(1− θ))
hn(1− θ)n

n!
f (n+1)(x+ θh), (29)

where for the function ϕ it is required only that ϕ(0) = 0 and ϕ′(x) is continuous
between 0 and h.

2.15 Francisco Gomes Teixeira

In 1886 a very general formula was given by Gomes Teixeira in [16]. The
formula reads as follows:

f(x+ h)− f(x)− hf ′(x)− · · · − h`

`! f
(`)(x)

F (x+ h)− F (x)− hF ′(x)− · · · − hk

k! F
(k)(x)

=

h`+1

(`+1)!f
(`+1)(x) + · · ·+ hn−1

(n−1)!f
(n−1)(x) +Rn(f, x)

hk+1

(k+1)!F
(k+1)(x) + · · ·+ hm−1

(m−1)!F
(m−1)(x) +Rm(F, x)

, (30)

where

Rn(f, x) =
hn(1− θ)n−1

(n− 1)!
f (n)(x+ θh),

Rm(F, x) =
hm(1− θ)m−1

(m− 1)!
F (m)(x+ θh),

with θ between 0 and 1. The proof is a matter of tedious computations and
applying the Lagrange finite increment formula (22) to the cumbersome function

g(z) =
∑̀
s=0

hk

k!
f (k)(x)−

n−1∑
s=0

(x+ h− z)k

k!
f (k)(z)

−

 k∑
s=0

hs

s!
F (k)(x)−

m−1∑
s=0

(x+ h− z)k

k!
F (k)(z)

×A
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where A is given by

A =
f(x+ h)− f(x)− hf ′(x)− · · · − h`

`! f
(`)(x)

F (x+ h)− F (x)− hF ′(x)− · · · − hk

k! F
(k)(x)

.

From the Gomes Teixeira formula (30) follows the Schlömilch-Roche remainder
(19), the Cauchy finite-increment formula (18) and even the Peano remainder
(31). For example, the formula (19) follows from specializing (30) as

f(h)− f(0)− hf ′(0)− · · · − hn−1

(n−1)!f
(n−1)(0)

F (h)− F (0)− hF ′(0)− · · · − hp−1

(p−1)!F
(n−1)(0)

=

hn(1−θ)n−1

(n−1)! f (n)(θh)

hp(1−θ)p−1

(p−1)! F (p)(θh)

and taking F (x) = xp.

2.16 Giuseppe Peano

In 1889 the Peano form of Taylor remainder was given in [25]. It gives
qualitative information regarding rn(x, h), namely

rn(x, h) = o (hn) when h→ 0. (31)

The proof of (31) given by Peano is based on the fact that, writing

f(x0 + h) = f(x0) + hf ′(x0) + · · ·+ hn

n!
f (n)(x0) +

hn

n!
Rn

we obtain

Rn =
f(x0 + h)− f(x0)− hf ′(x0)− · · · − hn−1

(n−1)!f
(n−1)(x0)− hn

n! f
(n)(x0)

hn

n!

.

(32)
From (32) we see that Rn is the quotient between two functions that are

null, as well as their derivatives up to order (n− 2), when h = 0. Iterating the
Cauchy finite increment formula (18), we obtain

Rn =
f (n−1)(x0 + h1)− f (n−1)(x0)

h1
− f (n)(x0) (33)

where h1 = θh and 0 < θ < 1. From the continuity of f (n−1)(x) we get (31)
from (33).

Remark 6. Note that a similar formula as (33) was obtained in [14] using
the L’Hospital rule repeatedly.
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2.17 Leonard Mascot Blumenthal

In 1926 (see [6]) it appeared the following Taylor remainder:

Rn =
hn−1(1− θ)n−1

(n− 1)!

∣∣∣∣∣ψ(a) ϕ(a)
ψ(b) ϕ(b)

∣∣∣∣∣∣∣∣∣∣ϕ′(ξ) ψ′(ξ)
ϕ(b) ψ(b)

∣∣∣∣∣
F (n)(a+ θh) (34)

for the Taylor formula

F (b) = F (a) + (b− a)F ′(a) +
(b− a)2

2!
F ′′(a) + · · ·+ (b− a)n−1

(n− 1)!
F (n−1)(a) +Rn,

where it was assumed that ∣∣∣∣∣ϕ′(ξ) ψ′(ξ)
ϕ(b) ψ(b)

∣∣∣∣∣ 6= 0.

The proof of Blumenthal remainder (34) follows from taking into account
the following ingredients:

(1) defining f(x) := F (b)− F (x)− (b− x)F ′(x)− · · · − (b−x)n−1

(n−1)! F
(n−1)(x);

(2) noticing that f ′(ξ) = −(b−ξ)n−1

(n−1)! F (n)(ξ) and that f(a) = Rn and f(b) = 0;

(3) applying the following existence result:

Let f, ϕ and ψ be continuous and differentiable functions in (a, b). Then
there exists ξ in the interval such that∣∣∣∣∣∣∣

f ′(ξ) ϕ′(ξ) ψ′(ξ)
f(a) ϕ(a) ψ(a)
f(b) ϕ(b) ψ(b)

∣∣∣∣∣∣∣ = 0.

Remark 7. Formula (34) permits to obtain Schlömilch remainder taking
ψ = a 6= 0.
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2.18 José Vicente Gonçalves

In 1953 a new Taylor remainder appeared in the textbook [36]. For the
Taylor formula

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·+ (x− a)n

n!
f (n)(a) + rn(x, a)

then the remainder is given by

rn(x, a) =
(x− a)n+1

(n+ 1)!

f (n)(ξ)− f (n)(a)

ξ − a
, x 6= a, ξ ∈ (a, x), (35)

where f : I −→ R is a continuous function in the open interval I and n-times
differentiable in the point a ∈ I. The strength of the Gonçalves remainder (35)
lies in the fact that the remainder is given with respect to the n-derivative of
the function whereas the other remainders are given using information regarding
the (n+ 1)-derivative of the function. We know about this formula by 2nd hand
source ([13, 31]). See §3 for a proof of this result, since we give a generalization
of the Gonçalves remainder.

2.19 James Wolfe

In 1954 a new proof of the Lagrange Taylor remainder (12) appeared in [39]
and is used in the recent textbook [29]. The proof relies on studying the function

g(t) =

n−1∑
k=0

f (k)(c)

k!
(t− c)k +

M(t− c)n

n!
− f(t),

where M is the unique solution to

f(x) =
n−1∑
k=0

f (k)(c)

k!
(x− c)k +

M(x− c)n

n!
.

We have g(c) = g′(c) = · · · g(n−1)(c) = 0 and by the definition of M we also
have that g(x) = 0. Since g(x) = g(c) = 0, by Rolle’s theorem, there exists θ
between c and x such that g′(θ) = 0. Applying repeatedly Rolle’s theorem we
get that there exists ξ such that g(n)(ξ) = M − f (n)(ξ).

3 New Taylor Remainder

In the spirit of Schlömilch remainder (17) and basing ourselves on some
idea of J. Santos Guerreiro, we can obtain a new generalization of Gonçalves
remainder (35), which depends on an auxiliary function, namely:
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Theorem 1. Let f : I −→ R be a continuous function in the open interval I
and n-times differentiable function in I. Moreover, let ϕ : I −→ R be a n-times
differentiable function such that ϕ(k)(a) = 0 for j = 1, . . . , n−1 and ϕ(k)(y) 6= 0
for all y different from a and x and j = 1, . . . , n − 1. Then, for all x ∈ I we
have

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + rn(x), (36)

with

rn(x) =
ϕ(x)− ϕ(a)

ϕ(n)(ξ)

(
f (n)(ξ)− f (n)(a)

)
, (37)

where x 6= a and ξ is between a and x.

Proof. We first note that

rn(a) = r′n(a) = · · · = r(n−1)
n (a) = 0 = ϕ′(a) = · · · = ϕ(n−1)(a).

On the one hand, by the Cauchy finite increment formula (18) we have

rn(x)− rn(a)

ϕ(x)− ϕ(a)
=
r′n(θ1)− r′n(a)

ϕ′(θ1)− ϕ′(a)

= · · ·

=
r

(n−1)
n (θn−1)− r(n−1)

n (a)

ϕ(n−1)(θn−1)− ϕ(n−1)(a)

=
r

(n)
n (ξ)

ϕ(n)(ξ)

(38)

where ξ := θn. On the other hand, differentiating the equality (36) n-times we

obtain f (n)(x)−f (n)(a) = r
(n)
n (x) which, together with (38), entails (37). QED
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[7] J. Bourget: Note sur les séries de Taylor et de Maclaurin, Nouvelles Ann. Math., 9,
(1870) 537–540.

[8] M. S. Rangachari C. T. Rajagopal: On an untapped source of medieval Keralese
mathematics, Arch. Hist. Exact Sci., 18, n.2 (1978) 89–102.

[9] M. S. Rangachari C. T. Rajagopal: On medieval Kerala mathematics, Arch. Hist.
Exact Sci., 35, n.2 (1986) 91–99.
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